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We describe a simple and intuitive implementation of the method of finite difference time domain
simulations for propagating electromagnetic waves using the simplest possible tools available in Mi-
crosoft Excel. The method overcomes the usual obstacles of familiarity with programming languages
as it relies on little more than the cut and paste features that are standard in Excel. Avenues of
exploration by students are proposed and sample graphs are included. The pedagogical effectiveness
of the implementation was tested during an Independent Activities Period class, composed of 80%
freshmen, at MIT, and yielded positive results.

I. INTRODUCTION

Here we outline a simple demonstrative example of the
method of finite difference time domain (FDTD) sim-
ulations of electromagnetic wave propagation appropri-
ate for undergraduates in an introductory electricity and
magnetism course or advanced high school science stu-
dents using Microsoft Excel, a robust software package
that offers advanced graphics, numeric, and animation
capabilities requiring minimal computer experience.1,2,3

Only two rows in the spreadsheet, one for initial elec-
tric field and another for initial magnetic field, need be
specified in order to initiate the simulation, and graphs
of the spatially and temporally evolving waveforms can
be updated in real time as the simulation is carried out
in Excel. We begin with a review of the basic tenets of
the FDTD method, proceed into an outline for the im-
plementation in Microsoft Excel, and conclude with some
suggested exercises.

II. METHODS

A. FDTD basics

The starting point for an FDTD simulation are
Maxwell’s equations, which are repeated here for the case
of one dimensional free space propagation in time (t) and
space (z ) with no sources or sinks for magnetic or electric
fields B or E respectively for the corresponding material
responses H or D,

∂Ex

∂t
= − 1

ǫ0

∂Hy

∂z
, (1)

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
, (2)

∇ · E = 0, (3)

∇ · B = 0. (4)

If we choose the x-direction for the polarization of the
electric field and the z-direction for direction of propaga-
tion, then it follows that the magnetic field is y-polarized
as indicated in the subscripts on the fields above. To dis-
cretize the equations of propagation, central difference
approximations are taken for the derivatives of time and
space. Temporal steps are indexed by the integer n and
related to continuous time by the relation t = n△t, and
spatial steps are indexed by the integer k and related to
continuous space by the relation z = k△z. The temporal
discretization method using central differences can then
be designated for variable X as

∂X

∂t
−→ ∆X

∆t
≡ X(n + 1/2) − X(n− 1/2)

∆t
, (5)

and spatial discretization as

∂X

∂z
−→ ∆X

∆z
≡ X(k + 1/2) − X(k − 1/2)

∆z
. (6)

In FDTD, we need only consider the two curl equations
1 and 2 above because the divergence conditions 3 and 4
can be satisfied implicitly by interleaving the electric and
magnetic field components in space in what has come to
be known as a Yee cell.4 A consequence of the spatial
interleaving is that the fields must also be interleaved in
time, known as ”leapfrog”, since the temporal response
of one field is proportional to the spatial variation of the
other at the previous time step. Implementing eqs. (1)
and (2) as indicated in eqs. (5) and (6) and interleaving
spatially and temporally yields the difference equation
version of Maxwell’s equations:
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At a given position in space, the field at each current
time step can be calculated from the previous values of
the fields. Solving for the latest field at the latest time
step in eqs. (7) and (8) yields:
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In this fashion, known as Euler forward, the solution
of Maxwell’s equations proceeds much the same way that
we envision electromagnetic wave propagation–an electric
field induces a magnetic field, which induces and electric
field, ad infinitum. The time step and grid size parame-
ters are chosen based on the propagating wave frequency
and wavelength. For stability, the general rule is that at
least ten grid points sum to less than the smallest wave-
length λmin considered, and the Courant condition then
determines the time step:5

∆z ≤ λmin

10
, (11)

∆t ≤ ∆z

2c0

. (12)

where c0 is the speed of light in vacuum.
The computer algorithm implementation of this pro-

cedure, eqs. (9) and (10), requires two one-dimensional
arrays in the spatial coordinate, one for Ex and one for
Hy, to be allocated in memory. After imposing an initial
condition, in the form of an initial electric or magnetic
field, each time step is calculated by the following pre-
scription:

t = t0 + n
∆t

2

Ẽx[k] = Ẽx[k] +
1

2
{Hy[k − 1] − Hy[k]}

t = t0 + n
∆t

2

Hy[k] = Hy[k] +
1

2
{Ẽx[k] − Ẽx[k + 1]} (13)

where we have adopted the normalized fields (Ẽ =√
ǫ0µ0E) to simplify the code, and included the stabil-

ity conditions, eqs. (11) and (12), within the constant
preceding the curl.6 The algorithm (eqn. (13)) is iter-
ated for the desired number of time steps. Note that
iteration of (13) results in an implicit time formulation,
i.e. time is not made explicit in the equations for the field
and only appears in the algorithm above for bookkeeping
purposes.

B. FDTD spreadsheet algorithm

The FDTD methodology for one dimension can be im-
plemented in spreadsheet format, here in Microsoft Ex-
cel, using simple cell formulas and cut-and-paste fea-
tures. This has an advantage over other pedagogical
approaches7 in that no programming experience is re-
quired. The starting point is the algorithm in (13) where
columns represent spatial steps and pairs of rows (one
for E and one for H) represent time steps. The algo-
rithm is illustrated graphically in the center section of
figure 1. For any time step (any pair of rows of E and
H), the mapping of (13) is: Ex(column)/Hy(column).
Since the electric field value from one prior cell is needed
to compute the curl, Ex begins at column one and ends
at column k + 1. Similarly, the magnetic field begins
at column zero but ends at column k, since its value at
one subsequent cell is needed when computing the curl.
The first two rows (t = 0) are for the initial conditions.
The algorithm computes the remaining cells. The stu-
dent need only type in the formulas for E and H for the
second time step and the first two columns; cut and paste
may be used to complete the remaining spatial columns
and temporal rows.

The procedure for implementing the algorithm is as
follows:

1. As a visual aid, enter the spatial coordinate (1, 2, 3,
etc) in the topmost row of the spreadsheet starting
at column B. After typing in the first two spatial
coordinates, select cells B and C and drag the ”fill”
handle to encompass as large a problem space as
needed.

2. Type ’Ex0’ in cell A2 and ’Hy0’ in cell A3, where
the number following the field component refers to
the time step. Drag the ”fill” handle down the col-
umn, as in 1, to include the desired number of time
steps.

3. Highlight the leftmost and rightmost columns of
the problem space.

4. Fill in all of row 2 and 3 (time step 0) to the end
of the problem space with zeros and highlight to
indicate that this is the initial condition for the
fields.

5. In the leftmost column and first time step for Ex,
type ’=B2’. Do the same for the rightmost col-
umn. This imposes a perfect electric conductor ra-
diation boundary condition on the problem space,
which means that impinging waves will reflect from
the problem space boundaries as they would from
a mirror.

6. In the second spatial position of Ex for time step
one (cell C4), type the formula ’=C2+0.5*(B3-C3)’
and press enter.
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7. Select the cell from the previous step and drag the
”fill” handle to the last un-highlighted spatial col-
umn in the row.

8. In the first spatial position of Hy for time step one
(cell C5) type the formula ’=B2+0.5*(B4-C4)’ and
press enter. These last two steps define the com-
puting steps of the algorithm.

9. Select the cell from the previous step, and drag
the ”fill” handle to the last un-highlighted spatial
column in the row.

10. Finally, select all the columns for time step 1 (Ex

and Hy), and drag the ”fill” handle through the last
time step in the simulation. Test that it works by
entering a 1 in the initial condition regions and see
that all cells automatically update; note that the
only valid regions for initialization are at the zero
time step (Ex and/or Hy) and between the first and
last columns of the problem space (highlighted).

The FDTD Excel code will now update all fields in
response to the initial conditions entered by the user. To
graphically visualize the simulation output, a single row
can be selected and graphed using the insert > chart >
(xy)scatter menu item. This outputs the spatial field
pattern at the moment in time designated by the row
number. To graph temporal evolution at a single point in
space, it is recommended to make a new field mesh with
only one field component (either Ex or Hy) on a separate
sheet and graph from that; otherwise, both the E and H
fields will appear in the graphs. This can be done using
cut-and-paste. An example spatial and temporal graph
of two counter-propagating pulses is illustrated in figure
3.

III. APPLICATIONS OF THE ALGORITHM

A. Power flow

The direction of propagation of light is dictated by
the phase between the electric and magnetic fields. For
transverse electromagnetic (TEM) wave propagation the
familiar right-hand rule applied by curling E into H indi-
cates the direction of power flow. Using our spreadsheet
code, this can be demonstrated by initializing both the
electric and magnetic field as a sinusoidal waveform mod-
ulated by a Gaussian envelope. Introducing a phase shift
of either 0 or π in the magnetic field allows the direction
of propagation to be controlled. If the electric (Ex) and
magnetic (Hy) field are both positive at the same points
in space and time, then the pulse travels in the positive
z direction; if the signs are opposite then propagation is
in the opposite direction as illustrated in figure 2.

B. Guided wave optics

Some of the most interesting applications of electrody-
namics occur when constraints are placed on the fields.
The perfect electric conductor radiation boundary condi-
tions form the walls of a resonator when the wavelength
in the problem space (resonator width) is of similar size
to the problem space itself. With PEC walls, no light
wave with a wavelength longer than twice the resonator
width will propagate. This is referred to as a cut-off
wavelength. Also, since the electric field must be zero at
the boundary and only nodes in a plane wave may sat-
isfy this, only wavelengths that are half-integer multiples
of the resonator width can propagate. Resonator modes
can be investigated by setting the initial conditions to a
plane wave with nodes at the boundaries is illustrated in
figure 3.

C. Transmission and reflection

By introducing a relative permittivity εr into equa-
tion (9), which changes the index of refraction and hence
the wave propagation speed, the spreadsheet code can
illustrate reflection and transmission at a material inter-
face. In terms of the normalized fields, the constant 1/2
becomes 1/2εr. Small errors in the transmitted and re-
flected fields are to be expected, but these will decrease as
the number of mesh points per wavelength increases. Fig-
ure 4 illustrates this process for an air (εr = 1)/material
(εr = 2) interface.

IV. FURTHER EXERCISES AND SUGGESTED

ACTIVITIES

The following exercises are recommended. The spread-
sheet code for the examples is available online, but it is
recommended that students augment the code on their
own, because writing and tinkering with the code is the
best way to understand how it works. Exercises are listed
in order of increasing difficulty, or in a manner such that
each exercise depends only on changes already adminis-
tered.

A. Fundamental

1. Use trigonometric and exponential mathematical
functions to generate the initial conditions and re-
produce the results in figure 2.

2. Study the cavity modes of a one-dimensional res-
onator, figure 3, by introducing standing waves into
the initial conditions. What happens when the
wavelength becomes longer than the problem space
size (the width of the resonator)?
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3. Experiment with radiation boundary conditions.
Change the radiation boundary condition from per-
fect electric conductor to perfect magnetic conduc-
tor (Hy is zero at the problem space boundaries).
What is different about reflections from these two
kinds of surfaces?

4. Implement a periodic boundary condition for un-
bounded propagation.

5. Reproduce the reflection and transmission simula-
tion in figure 4, and then change the interface from
air/material to material/air. What changes?

B. Advanced

1. Experiment with spatially periodic variation in
the relative permittivity. This should produce
frequency-dependent filtering, and for some condi-
tions should produce ”photonic bandgap” materials
with no propagation in certain frequency regions.

2. Introduce loss into the simulation by including non-
zero conductivity in Maxwell’s equations and im-
plementing it into the FDTD code.

3. Implement an absorbing boundary condition.

V. CONCLUSION

We have formulated a simple implementation of the
FDTD method of propagating electromagnetic waves us-
ing basic features available in Microsoft Excel, and we
have presented some illustrative examples. The imple-
mentation was tested on freshmen at MIT during its 2004

Independent Activities Period in a short course8 that met
for two hours on each of two consecutive days. This brief
introduction was sufficient for students to gain substan-
tial proficiency in elementary simulations like those il-
lustrated above. The class enjoyed unusually high at-
tendance, especially among students preparing for or re-
cently involved in electromagnetism coursework. Instruc-
tor (D.W.W.) observation and student feedback after the
course indicated considerable satisfaction with insights
and proficiency gained. Several student responses pin-
pointed the graphical form of the spreadsheet based al-
gorithm as the key merit of the approach. The benefit of
keeping track of a small number of unit cells in order to
see how the algorithm works is useful for beginning and
intermediate students of computer simulation, numerical
recipes, and electricity and magnetism. The automatic
updating of Excel graphs makes this an effective learning
tool for students interested in the basics of electromag-
netic wave propagation, as the consequences of changes
in initial conditions are illustrated graphically and in-
stantly. Finally, the methodology learned in this rapid
introduction may stimulate student interest in more ad-
vanced FDTD simulation techniques and their broad re-
search applications.9,10
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